Practices before the class (March 29)

Let \mathbb{P}_{2} be the vector space of the polynomials of degree at most 2 . Consider the linear transformation $T: \mathbb{P}_{2} \rightarrow \mathbb{R}^{4}$ defined by $T(\mathbf{p}(t))=\left[\begin{array}{c}p(0) \\ p(1) \\ p(2) \\ p^{\prime}(2)\end{array}\right]$
Find a basis for the range of T.

Practices before the class (March 29)

Answer:

- Any element in \mathbb{P}_{2} can be written as $p(t)=a t^{2}+b t+c$. Note $p^{\prime}(t)=2 a t+b$.
- Then $T\left(a t^{2}+b t+c\right)=\left[\begin{array}{c}a \cdot 0^{2}+b \cdot 0+c \\ a \cdot 1^{2}+b \cdot 1+c \\ a \cdot 2^{2}+b \cdot 2+c \\ 2 a \cdot 2+b\end{array}\right]=\left[\begin{array}{c}c \\ a+b+c \\ 4 a+2 b+c \\ 4 a+b\end{array}\right]=a\left[\begin{array}{l}0 \\ 1 \\ 4 \\ 4\end{array}\right]+b\left[\begin{array}{l}0 \\ 1 \\ 2 \\ 1\end{array}\right]+c\left[\begin{array}{l}1 \\ 1 \\ 1 \\ 0\end{array}\right]$ for any $p(t)=a t^{2}+b t+c$ in \mathbb{P}_{2}.
- This means any element in the range of T can be written as a linear combination of $\left[\begin{array}{l}0 \\ 1 \\ 4 \\ 4\end{array}\right],\left[\begin{array}{l}0 \\ 1 \\ 2 \\ 1\end{array}\right]$ and $\left[\begin{array}{l}1 \\ 1 \\ 1 \\ 0\end{array}\right]$. We can also check that they are linearly independent.
- A basis for the range of T is $\left\{\left[\begin{array}{l}0 \\ 1 \\ 4 \\ 4\end{array}\right],\left[\begin{array}{l}0 \\ 1 \\ 2 \\ 1\end{array}\right],\left[\begin{array}{l}1 \\ 1 \\ 1 \\ 0\end{array}\right]\right\}$

5.7 Applications to Differential Equations

Consider a system of differential equations:

$$
\begin{aligned}
& x_{1}^{\prime}=a_{11} x_{1}+\cdots+a_{1 n} x_{n} \\
& x_{2}^{\prime}=a_{21} x_{1}+\cdots+a_{2 n} x_{n} \\
& \quad \vdots \\
& x_{n}^{\prime}=a_{n 1} x_{1}+\cdots+a_{n n} x_{n}
\end{aligned}
$$

We can write the system as a matrix differential equation

$$
\begin{equation*}
\mathbf{x}^{\prime}(t)=A \mathbf{x}(t) \tag{1}
\end{equation*}
$$

where

$$
\mathbf{x}(t)=\left[\begin{array}{c}
x_{1}(t) \\
\vdots \\
x_{n}(t)
\end{array}\right], \quad \mathbf{x}^{\prime}(t)=\left[\begin{array}{c}
x_{1}^{\prime}(t) \\
\vdots \\
x_{n}^{\prime}(t)
\end{array}\right], \quad \text { and } \quad A=\left[\begin{array}{ccc}
a_{11} & \cdots & a_{1 n} \\
\vdots & & \vdots \\
a_{n 1} & \cdots & a_{n n}
\end{array}\right]
$$

A solution of equation (1) is a vector-valued function that satisfies (1) for all t in some interval of real numbers, such as $t \geq 0$.

Remark:

1. Superposition of Solutions. If \mathbf{u} and \mathbf{v} are solutions of $\mathbf{x}^{\prime}(t)=A \mathbf{x}(t)$, then $c \mathbf{u}+d \mathbf{v}$ is also a solution.

We have $\underline{u}^{\prime}=A \vec{u}, \vec{v}^{\prime}=A \vec{v}$ since \vec{u}, \vec{v} are solutions to $\vec{x}^{\prime}(t)=A \vec{x}(t)$.
We check $c \vec{n}+d \vec{v}$ satisfies $\vec{x}^{\prime}(t)=A \vec{x}(t)$:

$$
(c \vec{u}+d \vec{v})^{\prime}=c \vec{u}^{\prime}+d \vec{v}^{\prime}=c A \vec{u}+d A \vec{v}=A(c \vec{u}+d \vec{v})
$$

2. Fundamental Set of Solutions. If A is $n \times n$, then there are n linearly independent functions in a fundamental set and each solution of (1) is a unique linear combination of these n functions.
3. Initial Value Problem. If a vector \mathbf{x}_{0} is specified, then the initial value problem is to find the unique function \mathbf{x} such that

$$
\begin{aligned}
\mathbf{x}^{\prime}(t) & =A \mathbf{x}(t) \\
\mathbf{x}(0) & =\mathbf{x}_{0}
\end{aligned}
$$

Example 1. Consider $\left[\begin{array}{l}x_{1}^{\prime}(t) \\ x_{2}^{\prime}(t)\end{array}\right]=\left[\begin{array}{cc}3 & 0 \\ 0 & -5\end{array}\right]\left[\begin{array}{l}x_{1}(t) \\ x_{2}(t)\end{array}\right]$. Here the matrix A is diagonal, we call the system decoupled. Find solutions to this system.
ANS: We have $\left\{\begin{array}{l}x_{1}^{\prime}(t)=3 x_{1}(t) \\ x_{2}^{\prime}(t)=-5 x_{2}(t)\end{array}\right.$ and notice each function only depends on itself (de coupled).

$$
\begin{aligned}
& x_{1}^{\prime}=\frac{d x_{1}}{d t}=3 x_{1} \\
\Rightarrow & \frac{d x_{1}}{x_{1}}=3 d t \quad \text { (multiply } \frac{d t}{x_{1}} \text { both sides) } \\
\Rightarrow & \int \frac{d x_{1}}{x_{1}}=3 \int d t \quad \text { (take integral both sides). } \\
\Rightarrow & \left.\ln \left|x_{1}\right|=3 t+c \quad \text { (Recall } \int \frac{d x}{x}=\ln |x|+c \int d t=t+c\right) \\
\Rightarrow & e^{\ln \left|x_{1}\right|}=e^{3 t+c} \quad \text { (Take exp both sides). } \\
\Rightarrow & x_{1}= \pm \frac{e^{c}}{L} \cdot e^{3 t} \quad \text { again it is a constant. Let it to } \\
\Rightarrow & x_{1}(t)=c_{1} e^{3 t} \text { for any } c_{1} \text { is a solution to } x_{1}(t) .
\end{aligned}
$$

Similarly, $x_{2}(t)=c_{2} e^{-5 t}$ is a solution to the second equation.
Thus

$$
\left[\begin{array}{l}
x_{1}(t) \tag{2}\\
x_{2}(t)
\end{array}\right]=\left[\begin{array}{l}
c_{1} e^{3 t} \\
c_{2} e^{-5 t}
\end{array}\right]=c_{1}\left[\begin{array}{l}
1 \\
0
\end{array}\right] e^{3 t}+c_{2}\left[\begin{array}{l}
0 \\
1
\end{array}\right] e^{-5 t}
$$

for any constant C_{1} and C_{2}.
We call Eg (2) the general solution for the given system.

The example suggests a solution might be in the form of $\vec{x}(t)=\vec{V} e^{\lambda t}$, for some λ and a nonzero vector \vec{v}.

Remark: The Eigenvalue Method for Solving $\mathbf{x}^{\prime}(t)=A \mathbf{x}(t)$

- We plug $\vec{x}(t)=\vec{v} e^{x t}$ into $\vec{x}^{\prime}(t)=A \vec{x}(t)$.

$$
\begin{aligned}
& \vec{x}^{\prime}(t)=\underline{\vec{v} \lambda e^{\lambda t}}=A \vec{x}(t)=A \vec{v} e^{\lambda t} \\
& \Rightarrow A \vec{v}=\lambda \vec{v}
\end{aligned}
$$

Thus λ is an eigenvalue for A and \vec{v} is the corresponding eigenvector

- Therefore, to solve $\vec{x}^{\prime}=A \vec{x}$, we can start from finding eigenvalues and eigenvectors for A.
We summarize the method in Example 2 \& Example 4 as follows:

Constant Coeff. Homogeneous System:

Constant Coeff. Homogeneous: $\quad \mathbf{x}^{\prime}=A \mathbf{x}$
Solution:

$$
\mathbf{x}=c_{1} \mathbf{x}_{1}+c_{2} \mathbf{x}_{2}+\cdots,
$$

where \mathbf{x}_{i} are fundamental solutions from eigenvalues \& eigenvectors.
The method is described as below.

The Eigenvalue Method for $\mathbf{x}^{\prime}=A \mathbf{x}$ in this section:
We consider A to be 2×2, then the general solution is $\mathbf{x}(t)=c_{1} \mathbf{x}_{1}(t)+c_{2} \mathbf{x}_{2}(t)$, with the fundamental solutions $\mathbf{x}_{1}(t), \mathbf{x}_{2}(t)$ found has follows.

- Distinct Real Eigenvalues. $\mathbf{x}_{1}(t)=\mathbf{v}_{1} e^{\lambda_{1} t}, \mathbf{x}_{2}(t)=\mathbf{v}_{2} e^{\lambda_{2} t}$
- Complex Eigenvalues. $\lambda_{1,2}=p \pm q i$. (suggestion: use an example to rememher the method)
If $\mathbf{v}=\mathbf{a}+i \mathbf{b}$ is an eigenvector associated with $\lambda=p+q i$, then $\mathbf{x}_{1}(t)=e^{p t}(\mathbf{a} \cos q t-\mathbf{b} \sin q t), \mathbf{x}_{2}(t)=e^{p t}(\mathbf{b} \cos q t+\mathbf{a} \sin q t)$.

Example 2. The circuit in Figure 1 can be described by the differential equation

$$
\left[\begin{array}{c}
x_{1}^{\prime}(t) \tag{3}\\
x_{2}^{\prime}(t)
\end{array}\right]=\left[\begin{array}{cc}
-\left(1 / R_{1}+1 / R_{2}\right) / C_{1} & 1 /\left(R_{2} C_{1}\right) \\
1 /\left(R_{2} C_{2}\right) & -1 /\left(R_{2} C_{2}\right)
\end{array}\right]\left[\begin{array}{l}
x_{1}(t) \\
x_{2}(t)
\end{array}\right]
$$

where $x_{1}(t)$ and $x_{2}(t)$ are the voltages across the two capacitors at time t. Suppose resistor R_{1} is 1 ohm, R_{2} is 2 ohms, capacitor C_{1} is 1 farad, and C_{2} is .5 farad, and suppose there is an initial charge of 5 volts on capacitor C_{1} and 4 volts on capacitor C_{2}. Find formulas for $x_{1}(t)$ and $x_{2}(t)$ that describe how the voltages change over time.

ANS: $R_{1}=1, \quad R_{2}=2$

$$
x_{1}(0)=5
$$

$$
C_{1}=1, \quad C_{2}=0.5 \quad x_{2}(0)=4
$$

Let A be the 2×2 matrix in (3)
Then

$$
A=\left[\begin{array}{cc}
-(1 / 1+1 / 2) \cdot 1 & 1 / 2 \\
1 / 2 \times 0.5 & -1 / 2 \times 0.5
\end{array}\right]
$$

So we need to solve the initial value problem:

$$
\vec{x}^{\prime}=\left[\begin{array}{cc}
-1.5 & 0.5 \\
1 & -1
\end{array}\right] \vec{x}, \quad \vec{x}(0)=\left[\begin{array}{l}
5 \\
4
\end{array}\right]
$$

From the discussion above, we need to find solutions in the form $\vec{v} e^{\lambda t}$, where λ is an eigenvalue for A and \vec{v} is the corresponaling eigenvector.

$$
\begin{aligned}
& |A-\lambda I|=\left|\begin{array}{cc}
-1.5-\lambda & 0.5 \\
1 & -1-\lambda
\end{array}\right|=(\lambda+1)(\lambda+1.5)-0.5=\lambda^{2}+2.5 \lambda+1=0 \\
& \Rightarrow(\lambda+0.5)(\lambda+2)=0 \Rightarrow \lambda_{1}=-0.5 \text { and } \lambda_{2}=-2 .
\end{aligned}
$$

For $\lambda_{1}=-0.5$, the eigenvector is $\vec{V}_{1}=\left[\begin{array}{l}1 \\ 2\end{array}\right]$
For $\lambda_{2}=-2$, the eigenvector is $\vec{V}_{2}=\left[\begin{array}{r}-1 \\ 1\end{array}\right]$
Thus $\vec{x}_{1}=\vec{v}_{1} e^{\lambda_{1} t}$

$$
\vec{x}_{2}=\vec{V}_{2} e^{\lambda_{t} t}
$$

both satisfy $\vec{x}^{\prime}=A \vec{x}$. Moreover, they are linearly independent.
Thus a. general solution is their linear combination.

$$
\begin{aligned}
\vec{x}(t) & =c_{1} \vec{x}_{1}(t)+c_{2} \vec{x}_{2}(t) \\
\Rightarrow \vec{x}(t) & =c_{1}\left[\begin{array}{l}
1 \\
2
\end{array}\right] e^{-0.5 t}+c_{2}\left[\begin{array}{l}
-1 \\
1
\end{array}\right] e^{-2 t} \quad \text { for any constants } c_{1} \text { and } c_{2}
\end{aligned}
$$

Note $\vec{x}(t)$ also needs to satisfy the initial value:

$$
\text { i.e. } \begin{aligned}
& \vec{x}(0)=\left[\begin{array}{l}
5 \\
4
\end{array}\right] \\
& \Rightarrow C_{1}(0) \\
&\left.\Rightarrow \begin{array}{l}
1 \\
2
\end{array}\right] e^{-0.5 \cdot 0}+C_{2}\left[\begin{array}{l}
-1 \\
1
\end{array}\right] e^{-2 \cdot 0}=\left[\begin{array}{l}
5 \\
4
\end{array}\right] \\
& \Rightarrow\left\{\begin{array}{l}
-1 \\
1
\end{array}\right]=\left[\begin{array}{l}
5 \\
4
\end{array}\right] \\
& C_{2}=-2
\end{aligned}
$$

So the solution to $\vec{x}^{\prime}=A \vec{x}, \vec{x}(0)=\left[\begin{array}{l}5 \\ 4\end{array}\right]$ is

$$
\begin{aligned}
& \vec{x}(t)=3\left[\begin{array}{l}
1 \\
2
\end{array}\right] e^{-0.5 t}-2\left[\begin{array}{l}
-1 \\
1
\end{array}\right] e^{-2 t} \\
& \text { i.e. }\left[\begin{array}{l}
x_{1}(t) \\
x_{2}(t)
\end{array}\right]=\left[\begin{array}{l}
3 e^{-0.5 t}+2 e^{-2 t} \\
6 e^{-0.5 t}-2 e^{-2 t}
\end{array}\right]
\end{aligned}
$$

FIGURE 2 The origin as an attractor.

Decoupling a Dynamical System
Let A be $n \times n$ and has n linearly independent eigenvectors, ie., A is diagonalizable.
We use Example $\mathbf{3}$ to explain how to decouple the equation $\mathbf{x}^{\prime}=A \mathbf{x}$. For a general discussion about the process, please refer to Page 324-325 in our textbook.

Example 3. Let $A=\left[\begin{array}{ll}1 & -2 \\ 3 & -4\end{array}\right]$.
Make a change of variable that decouples the equation $\mathbf{x}^{\prime}=A \mathbf{x}$. Write the equation $\mathbf{x}(t)=P \mathbf{y}(t)$ and show the calculation that leads to the uncoupled system $\mathbf{y}^{\prime}=D \mathbf{y}$, specifying P and D.

ANS: We can compute the eigenvalues and eigenvectors for A.

$$
\begin{array}{ll}
\lambda_{1}=-2 & \overrightarrow{V_{1}}=\left[\begin{array}{l}
2 \\
3
\end{array}\right] \\
\lambda_{2}=-1 & \vec{V}_{2}=\left[\begin{array}{l}
1 \\
1
\end{array}\right]
\end{array}
$$

- To decouple, $\vec{x}^{\prime}=A \vec{x}$. set $P=\left[\begin{array}{ll}\vec{v}_{1} & \vec{V}_{2}\end{array}\right]=\left[\begin{array}{ll}2 & 1 \\ 3 & 1\end{array}\right]$. and $D=\left[\begin{array}{cc}-2 & 0 \\ 0 & -1\end{array}\right]$. Then $A=P D P^{-1}$ and $D=P^{-1} A P$
- Substitute $\vec{x}(t)=P \vec{y}(t)$ into $\vec{x}^{\prime}=A \vec{x}$. We have

$$
\begin{aligned}
& \vec{x}^{\prime}(t)=(P \vec{y}(t))^{\prime}=P \vec{y}^{\prime}(t) \\
= & A P \vec{y}(t)=P P P^{-1} P^{\prime} \vec{y}(t) \\
\Rightarrow & P^{-1} P \vec{y}^{\prime}(t)=P P D \vec{y}(t) \\
\Rightarrow & \vec{y}^{\prime}(t)=D \vec{y}(t)
\end{aligned}
$$

or $\vec{y}^{\prime}=\left[\begin{array}{rr}-2 & 0 \\ 0 & -1\end{array}\right] \vec{y}$

$$
\Rightarrow\left[\begin{array}{l}
y_{1}^{\prime}(t) \\
y_{2}^{\prime}(t)
\end{array}\right]=\left[\begin{array}{cc}
-2 & 0 \\
0 & -1
\end{array}\right]\left[\begin{array}{l}
y_{1}(t) \\
y_{2}(t)
\end{array}\right]
$$

The next formula is useful if we have complex eigenvales When solving $\vec{x}^{\prime}=A \vec{x}$
Euler's formula for complex numbers:

- Euler's formula: $e^{i \theta}=\cos \theta+i \sin \theta$

- $e^{z}=e^{x+i y}=e^{x} \cdot e^{i y}=e^{x}(\cos y+i \sin y)$
where $z=x+i y$ is any complex number.

Complex Eigenvalues
In Example 4, a real matrix A has a pair of complex eigenvalues λ and $\bar{\lambda}$, with associated complex eigenvectors \mathbf{v} and $\overline{\mathbf{v}}$. So two solutions of $\mathbf{x}^{\prime}=A \mathbf{x}$ are

$$
\mathbf{x}_{1}(t)=\mathbf{v} e^{\lambda t} \quad \text { and } \quad \mathbf{x}_{2}(t)=\overline{\mathbf{v}} e^{\bar{\lambda} t}
$$

which are functions in terms of complex numbers $:$.
In practice, we want to find real-valued solutions (a).
We use this example to explain how to find real-valued solutions for $\mathbf{x}^{\prime}=A \mathbf{x}$ in such cases.

Example 4. Find the solution to the initial value problem $\mathbf{x}^{\prime}=A \mathbf{x}$, where $A=\left[\begin{array}{cc}-2 & -2.5 \\ 10 & -2\end{array}\right]$ and

$$
\mathbf{x}_{0}=\mathbf{x}(0)=\left[\begin{array}{l}
3 \\
3
\end{array}\right]
$$

Note: You can use the following online calculator to graph the solution curve:
https://aeb019.hosted.uark.edu/pplane.html
ANs: $|A-\lambda I|=\left|\begin{array}{cc}-2-\lambda & -2.5 \\ 10 & -2-\lambda\end{array}\right|=(\lambda+2)^{2}+25=0$

$$
\Rightarrow \lambda+2= \pm 5 i \Rightarrow \lambda=-2 \pm 5 i
$$

For $\lambda_{1}=-2+5 i$, we solve $(A-\lambda I) \vec{v}=\overrightarrow{0}$, the augmented
matrix is

$$
\left[\begin{array}{ccc}
-5 i & -2.5 & 0 \\
10 & -5 i & 0
\end{array}\right]
$$

Notice $R 1 \times 2 i=R_{2}$. thus $R 1$ and $R 2$ give the same equation.

$$
\begin{aligned}
& 10 x_{1}-5 i x_{2}=0 \\
\Rightarrow & 2 x_{1}=i x_{2}
\end{aligned}
$$

$\Rightarrow \vec{r}_{1}=2 \times\left[\begin{array}{l}\frac{i}{2} \\ 1\end{array}\right]=\left[\begin{array}{l}i \\ 2\end{array}\right]$ is an eigenvector for $\lambda_{1}=-2+5 i$.
By §5.5. we know $\vec{V}_{2}=\overrightarrow{\vec{V}_{1}}=\left[\begin{array}{c}-i \\ 2\end{array}\right]$ is an eigenvector for $\lambda_{2}=\overline{\lambda_{1}}=-2-5 i$.
Thus $\vec{x}(t)=c_{1}\left[\begin{array}{l}i \\ 2\end{array}\right] e^{(-2 t s i) t}+c_{2}\left[\begin{array}{c}-i \\ 2\end{array}\right] e^{(-2-5 i) t}$ is
a complex-valued solution.
However, we often want to find real-valued solutions.
To do this, we know

$$
\left[\begin{array}{l}
i \\
2
\end{array}\right] e^{(-2+5 i) t}
$$

is a solution.

Rewrite it as

$$
\begin{aligned}
& \vec{x}(t)=\left[\begin{array}{l}
i \\
2
\end{array}\right] e^{(-2+5 i) t} \\
& =\left[\begin{array}{l}
i \\
2
\end{array}\right] e^{-2 t}(\cos 5 t+i \sin 5 t)\left(\text { as } e^{(x+i y) t}=e^{x t}(\cos y t+i \sin y t)\right) \\
& =\left[\begin{array}{l}
\frac{i e^{-2 t} \cos 5 t}{2 e^{-2 t} \cos 5 t}+e^{-2 t} \sin 5 t \\
+2 i e^{-2 t} \sin 5 t
\end{array}\right] \\
& \left.=\frac{\left[-e^{-2 t} \sin 5 t\right.}{2 e^{-2 t} \cos 5 t}\right]+i\left[\begin{array}{l}
e^{-2 t} \cos 5 t \\
\uparrow \\
2 e^{-2 t} \sin 5 t
\end{array}\right] \\
& \operatorname{Re}(\vec{x}(t)) \quad \operatorname{Im}(\vec{x}(t))
\end{aligned}
$$

Note $\operatorname{Re}(\vec{x}(t))$ and $\operatorname{Im}(\vec{x}(t))$ are both solutions to $\vec{x}^{\prime}=A \vec{x}$.
Moreover, they are linearly independent. Thus a general solution (real-valued) can be a linear combination
of them.

$$
\vec{x}(t)=c_{1} e^{-2 t}\left[\begin{array}{l}
-\sin 5 t \\
2 \cos 5 t
\end{array}\right]+c_{2} e^{-2 t}\left[\begin{array}{l}
\cos 5 t \\
2 \sin 5 t
\end{array}\right]
$$

The initial condition $\vec{x}(0)=\left[\begin{array}{l}3 \\ 3\end{array}\right]$ gives

$$
\begin{aligned}
& {\left[\begin{array}{l}
3 \\
3
\end{array}\right]=c_{1}\left[\begin{array}{l}
0 \\
2
\end{array}\right]+c_{2}\left[\begin{array}{l}
1 \\
0
\end{array}\right]} \\
& \Rightarrow\left\{\begin{array}{l}
c_{1}=15 \\
c_{2}=3
\end{array}\right.
\end{aligned}
$$

Thus
FIGURE 5
The origin as a spiral point.

Summary 1: Solving $\mathbf{x}^{\prime}=A \mathbf{x}$ when A has complex eigenvalues
We summarize the general method described in Example 4 below:
Assume we have complex eigenvalues $\lambda=p+q i, \bar{\lambda}=p-q i$.
If \mathbf{v} is an eigenvector associated with $\lambda=p+q i$, then \mathbf{v} can be written as $\mathbf{v}=\mathbf{a}+i \mathbf{b}$.
Then we have the solution

$$
\begin{gathered}
\mathbf{x}(t)=\mathbf{v} e^{\lambda t}=(\mathbf{a}+i \mathbf{b}) e^{(p+q i) t} \\
\Rightarrow \quad \mathbf{x}(t)=e^{p t}(\mathbf{a} \cos q t-\mathbf{b} \sin q t)+i e^{p t}(\mathbf{b} \cos q t+\mathbf{a} \sin q t)
\end{gathered}
$$

Then we get the real-valued solutions

$$
\left\{\begin{array}{l}
\mathbf{x}_{1}(t)=\operatorname{Re}(\mathbf{x}(t))=e^{p t}(\mathbf{a} \cos q t-\mathbf{b} \sin q t) \\
\mathbf{x}_{2}(t)=\operatorname{Im}(\mathbf{x}(t))=e^{p t}(\mathbf{b} \cos q t+\mathbf{a} \sin q t)
\end{array}\right.
$$

Summary 2: Gallery of Typical Solution Graphs (Trajectories) for the System $\mathbf{x}^{\prime}=A \mathbf{x}$
We summarize the typical trajectories that show up in this section:

1. The origin is an attractor (or sink)

- This happens when A has distinct negative real eigenvalues.
- The arrows are pointing towards the origin.
- Check Example 2 for details.

2. The origin is a repeller (or source)

- This happens when A has distinct positive real eigenvalues.
- The arrows are traversed away from the origin.

3. The origin is a saddle point.

- This happens when A has real eigenvalues of opposite sign.
- Check Exercise 5 for details about the eigenvectors, greatest attraction, and greatest repulsion.

4. The origin is a spiral point.

- This happens when A has complex conjugate eigenvalues with nonzero real parts.
- If the eigenvalues have positive real parts, the trajectories spiral outward.

- If the eigenvalues have negative real parts, the trajectories spiral inward. Check Example 4.

5. The origin is a center and the trajectories are ellipses about the origin.

- This happens when A has purely imaginary eigenvalues.
- Your Handwritten Homework 28 is an example of this case.

Exercise 5. (The case when the origin is a saddle point)
Solve the initial value problem $\mathbf{x}^{\prime}(t)=A \mathbf{x}(t)$ for $t \geq 0$, with $\mathbf{x}(0)=(3,2)$. Classify the nature of the origin as an attractor, repeller, or saddle point of the dynamical system described by $\mathbf{x}^{\prime}=A \mathbf{x}$. Find the directions of greatest attraction and/or repulsion. When the origin is a saddle point, sketch typical trajectories.
$A=\left[\begin{array}{rr}-2 & -5 \\ 1 & 4\end{array}\right]$
Solution. $A=\left[\begin{array}{rr}-2 & -5 \\ 1 & 4\end{array}\right], \operatorname{det}(A-\lambda I)=\lambda^{2}-2 \lambda-3=(\lambda+1)(\lambda-3)=0$.
Eigenvalues: -1 and 3 .
For $\lambda=3:\left[\begin{array}{rrr}-5 & -5 & 0 \\ 1 & 1 & 0\end{array}\right] \sim\left[\begin{array}{lll}1 & 1 & 0 \\ 0 & 0 & 0\end{array}\right]$, so $x_{1}=-x_{2}$ with x_{2} free. Take $x_{2}=1$ and $\mathbf{v}_{1}=\left[\begin{array}{r}-1 \\ 1\end{array}\right]$.
For $\lambda=-1:\left[\begin{array}{rrr}-1 & -5 & 0 \\ 1 & 5 & 0\end{array}\right] \sim\left[\begin{array}{lll}1 & 5 & 0 \\ 0 & 0 & 0\end{array}\right]$, so $x_{1}=-5 x_{2}$ with x_{2} free. Take $x_{2}=1$ and $\mathbf{v}_{2}=\left[\begin{array}{r}-5 \\ 1\end{array}\right]$.
The general solution of $\mathbf{x}^{\prime}=A \mathbf{x}$ has the form $\mathbf{x}(t)=c_{1}\left[\begin{array}{r}-1 \\ 1\end{array}\right] e^{3 t}+c_{2}\left[\begin{array}{c}-5 \\ 1\end{array}\right] e^{-t}$.
For the initial condition $\mathbf{x}(0)=\left[\begin{array}{l}3 \\ 2\end{array}\right]$, find c_{1} and c_{2} such that $c_{1} \mathbf{v}_{1}+c_{2} \mathbf{v}_{2}=\mathbf{x}(0)$:
$\left[\begin{array}{lll}\mathbf{v}_{1} & \mathbf{v}_{2} & \mathbf{x}(0)\end{array}\right]=\left[\begin{array}{rrr}-1 & -5 & 3 \\ 1 & 1 & 2\end{array}\right] \sim\left[\begin{array}{rrr}1 & 0 & 13 / 4 \\ 0 & 1 & -5 / 4\end{array}\right]$.
Thus $c_{1}=13 / 4, c_{2}=-5 / 4$, and $\mathbf{x}(t)=\frac{13}{4}\left[\begin{array}{r}-1 \\ 1\end{array}\right] e^{3 t}-\frac{5}{4}\left[\begin{array}{r}-5 \\ 1\end{array}\right] e^{-t}$.
Since one eigenvalue is positive and the other is negative, the origin is a saddle point of the dynamical system described by $\mathbf{x}^{\prime}=A \mathbf{x}$. The direction of greatest attraction is the line through \mathbf{v}_{2} and the origin. The direction of greatest repulsion is the line through \mathbf{v}_{1} and the origin.

Exercise 6. Construct the general solution of $\mathbf{x}^{\prime}=A \mathbf{x}$ involving complex eigenfunctions and then obtain the general real solution. Describe the shapes of typical trajectories.
$A=\left[\begin{array}{rrr}-6 & -11 & 16 \\ 2 & 5 & -4 \\ -4 & -5 & 10\end{array}\right]$
Solution. We first find the eigenvalues for A by solving $|A-\lambda I|=0$. The eigenvalues are 4,3 and 2 .
By solving the equations $(A-\lambda I) \mathbf{x}=\mathbf{0}$, we find the eigenvector associated to $\lambda_{1}=4$ is $\mathbf{v}_{1}=\left[\begin{array}{r}7 \\ -2 \\ 3\end{array}\right]$.
For $\lambda_{2}=3$, we have $\mathbf{v}_{2}=\left[\begin{array}{r}3 \\ -1 \\ 1\end{array}\right]$
For $\lambda_{3}=2$, we have $\mathbf{v}_{3}=\left[\begin{array}{l}2 \\ 0 \\ 1\end{array}\right]$.
Hence the general solution is $\mathbf{x}(t)=c_{1}\left[\begin{array}{r}7 \\ -2 \\ 3\end{array}\right] e^{4 t}+c_{2}\left[\begin{array}{r}3 \\ -1 \\ 1\end{array}\right] e^{3 t}+c_{3}\left[\begin{array}{l}2 \\ 0 \\ 1\end{array}\right] e^{2 t}$. The origin is a repeller, because all eigenvalues are positive. All trajectories tend away from the origin.

Exercise 7. Construct the general solution of $\mathbf{x}^{\prime}=A \mathbf{x}$ involving complex eigenfunctions and then obtain the general real solution. Describe the shapes of typical trajectories.
$A=\left[\begin{array}{rrr}53 & -30 & -2 \\ 90 & -52 & -3 \\ 20 & -10 & 2\end{array}\right]$
Solution. We first find the eigenvalues for A by solving $|A-\lambda I|=0$. The eigenvalues are $5+2 i, 5-2 i$ and 1.

For $\lambda_{1}=5+2 i$, we have $\mathbf{v}_{1}=\left[\begin{array}{c}23-34 i \\ -9+14 i \\ 3\end{array}\right]$.
For $\lambda_{2}=5-2 i$, we have $\mathbf{v}_{2}=\left[\begin{array}{c}23+34 i \\ -9-14 i \\ 3\end{array}\right]$.
For $\lambda_{3}=1$, we have $\mathbf{v}_{3}=\left[\begin{array}{r}-3 \\ 1 \\ 1\end{array}\right]$.
Thus the general complex solution is $\mathbf{x}(t)=c_{1}\left[\begin{array}{c}23-34 i \\ -9+14 i \\ 3\end{array}\right] e^{(5+2 i) t}+c_{2}\left[\begin{array}{c}23+34 i \\ -9-14 i \\ 3\end{array}\right] e^{(5-2 i) t}+c_{3}\left[\begin{array}{r}-3 \\ 1 \\ 1\end{array}\right] e^{t}$.
Rewriting the first eigenfunction yields

$$
\left[\begin{array}{c}
23-34 i \\
-9+14 i \\
3
\end{array}\right] e^{5 t}(\cos 2 t+i \sin 2 t)=\left[\begin{array}{c}
23 \cos 2 t+34 \sin 2 t \\
-9 \cos 2 t-14 \sin 2 t \\
3 \cos 2 t
\end{array}\right] e^{5 t}+i\left[\begin{array}{c}
23 \sin 2 t-34 \cos 2 t \\
-9 \sin 2 t+14 \cos 2 t \\
3 \sin 2 t
\end{array}\right] e^{5 t}
$$

Hence the general real solution is

$$
\mathbf{x}(t)=c_{1}\left[\begin{array}{c}
23 \cos 2 t+34 \sin 2 t \\
-9 \cos 2 t-14 \sin 2 t \\
3 \cos 2 t
\end{array}\right] e^{5 t}+c_{2}\left[\begin{array}{c}
23 \sin 2 t-34 \cos 2 t \\
-9 \sin 2 t+14 \cos 2 t \\
3 \sin 2 t
\end{array}\right] e^{5 t}+c_{3}\left[\begin{array}{r}
-3 \\
1 \\
1
\end{array}\right] e^{t}
$$

where c_{1}, c_{2}, and c_{3} are real. The origin is a repeller, because the real parts of all eigenvalues are positive. All trajectories spiral away from the origin.

