Practices before the class (March 29)

Let P> be the vector space of the polynomials of degree at most 2. Consider the linear
p(0)

transformation T : P, — R* defined by T(p(t)) = Zg; .
P'(2)

Find a basis for the range of T.
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Practices before the class (March 29)

Answer:

® Any element in P; can be written as p(t) = at? + bt + c. Note p’(t) = 2at + b.

a-024+b-0+c c 0 0 1

a-1°+b-1+c¢ a+b+c 1 1 1

* Then T(at® + bt +¢) = a-22+b-24c| |4a+2b+c| 7|4 +b 2| T 1
2a-2+ b 4a+ b 4 1 0

for any p(t) = at? + bt + c in Py.

® This means any element in the range of T can be written as a linear combination of

0 0 1

1 1 1 : .

NERD and 1l We can also check that they are linearly independent.
4 1 0

® A basis for the range of T is {

=N = O
[ N
—

0
1
4|
4
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5.7 Applications to Differential Equations

Consider a system of differential equations:

!

T1 = a1x1 + -+ a1,
!

Ty = A21T1 + -+ + A2p Ty

/
T, = ani1 + o+ Apny

We can write the system as a matrix differential equation

x'(t) = Ax(t) (1)
where
z1(t) z1(t) air -+ a1
xt)=| |, ¥@)=| ¢ |, and A=
Zn(t) z,(t) Gn1 vt @

A solution of equation (1) is a vector-valued function that satisfies (1) for all ¢ in some interval of real numbers,
suchast > 0.

Remark:

1. Superposition of Solutions. If u and v are solutions of x'(t) = Ax(t), then cu + dv is also a solution.

We hove =AW, V'= AV since T. Vo sohdions fo XU = AR(t),

We chech. ¢+ dv Sa‘(ig{fes () = ARet)y -

(cu‘+dﬁ)/: CA' +dV = cAR+d AV = A(c+d7)

2. Fundamental Set of Solutions. If A isn X n, then there are n linearly independent functions in a
fundamental set and each solution of (1) is a unique linear combination of these n functions.

3. Initial Value Problem. If a vector Xy is specified, then the initial value problem is to find the unique
function x such that




. z)(t) 3 0] [z1(2) o
Example 1. Consider | = . Here the matrix A is diagonal, we call the system
2y(t)] ~ [0 —5] |za(t)

decoupled. Find solutions to this system.
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The exomple suggests o sobrtion might ke o e form
O‘f ?L’t): Ve}\-{'_l '[0*’ some A Gnol O non zero 1/ac+of7

Remark: The Eigenvalue Method for Solving x'(t) = Ax(t)

- We f/Mj Ry= Ve inte X = ARME).

X2y = AR = Avg’

> A=V
Tws N i on e:‘yznvo\l/;/u/ ]Lor A onol T s Jhe co{fegfonoln\/\g
GF?QHVEC/UY,
- Theefore, fo sobe R'=AX, we con storl rom ]lnnol.‘m?
@Tjﬂnvm’/ws tnel erjj;mve Hors —tv? A

We stmmorice +he amethod in Emmflel Q vaﬂ(aéz 4 os %o//ows:

Constant Coeff. Homogeneous System: X

Constant Coeff. Homogeneous: x' = Ax

Solution: X =C1X1 + CoXo + - - -,
where x; are fundamental solutions
from eigenvalues & eigenvectors.
The method is described as below.

The Eigenvalue Method for x’ = Ax in this section:

We consider A to be 2 x 2, then the general solution is x(t) = c1x1(t) + coxa(t),
with the fundamental solutions x; (), x2(t) found has follows.

e Distinct Real Eigenvalues. x;(t) = vieM? x5 (t) = voe??!

e Complex Eigenvalues. A1 2 = p=+qi. (suggestion: use an example to remem-
ber the method)
If v =a+ ib is an eigenvector associated with A = p + gi, then

x1(t) = eP*(acos gt — bsingt), x2(t) = eP!(b cos gt + asin gt).




Example 2. The circuit in Figure 1 can be described by the differential equation
ri(t)] _ l— (I/R1+1/R5)/C1 1/ (R2Ch) ] lﬂﬁl(t)} (3)
5(t) 1/ (R2C) —1/(R2C2)] [za(t)

where z1(t) and z2(t) are the voltages across the two capacitors at time t. Suppose resistor Ry is 1 ohm, Ry
is 2 ohms, capacitor C is 1 farad, and Cj is .5 farad, and suppose there is an initial charge of 5 volts on
capacitor C7 and 4 volts on capacitor Cs. Find formulas for z1(t) and x2(t) that describe how the voltages

change over time. /‘\NST Q‘:_“L QL: N <10 ¢
Cl - |) C;:O-S_ Xa(0)= 4.

N
| let A b 4he 22 modrix in (3)
N Then A- [-U/l +A) K
R2§ '/)x 08 *I/),xot
e

So We need 4o  solwe the intinl  value /)roHam:

j{/: -8 0.5 -;) ;{O)z[s\J
I = 4
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FIGURE 2 The origin as an attractor.




Decoupling a Dynamical System

Let A be n X m and has n linearly independent eigenvectors, i.e., A is diagonalizable.

We use Example 3 to explain how to decouple the equation x’ = Ax. For a general discussion about the
process, please refer to Page 324-325 in our textbook.

1 -2
E le3.Let A = )
Xample e {3 _4}

Make a change of variable that decouples the equation x’ = Ax. Write the equation x(¢) = Py(t) and show
the calculation that leads to the uncoupled system y’ = Dy, specifying P and D.
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where 2: x+442 ’s omy comlolbc number.




Complex Eigenvalues

In Example 4, a real matrix A has a pair of complex eigenvalues X\ and A, with associated complex
eigenvectors v and V. So two solutions of x’ = Ax are

x1(t) =veM and x,(t) = veM,
which are functions in terms of complex numbers ).

In practice, we want to find real-valued solutions ().

We use this example to explain how to find real-valued solutions for x’ = Ax in such cases.

-2 =25
Example 4. Find the solution to the initial value problem x’ = Ax, where A = l ] and

10 -2
xo = x(0) — m

Note: You can use the following online calculator to graph the solution curve:

https://aeb019.hosted.uark.edu/pplane.html
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Summary 1: Solving x' = Ax when A has complex eigenvalues
We summarize the general method described in Example 4 below:
Assume we have complex eigenvalues A = p + qt, A= p— qi.
If v is an eigenvector associated with A = p + g, then v can be written as v = a + ib.
Then we have the solution
x(t) = veM = (a + ib)ePT?)!

=  x(t) = e!'(acosqt — bsinqt) + ie? (b cos gt + asin qt)

Then we get the real-valued solutions

{xl(t) = Re(x(t)) = e!'(acos gt — bsin qt)
x2(t) = Im (x(t)) = e (b cos gt + asin gt)




Summary 2: Gallery of Typical Solution Graphs (Trajectories) for the System x' = Ax
We summarize the typical trajectories that show up in this section:

1. The origin is an attractor (or sink)
o This happens when A has distinct negative real eigenvalues.
o The arrows are pointing towards the origin.

o Check Example 2 for details.
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2. The origin is a repeller (or source)

o This happens when A has distinct positive real eigenvalues.
o The arrows are traversed away from the origin.
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3. The origin is a saddle point.

o This happens when A has real eigenvalues of opposite sign.
o Check Exercise 5 for details about the eigenvectors, greatest attraction, and greatest repulsion.

/ 7
7
/

/
/

4. The origin is a spiral point.
o This happens when A has complex conjugate eigenvalues with nonzero real parts.

o If the eigenvalues have positive real parts, the trajectories spiral outward.




5. The origin is a center and the trajectories are ellipses about the origin.
o This happens when A has purely imaginary eigenvalues.

o Your Handwritten Homework 28 is an example of this case.

Exercise 5. (The case when the origin is a saddle point)

Solve the initial value problem x'(t) = Ax(t) fort > 0, with x(0) = (3, 2). Classify the nature of the origin as
an attractor, repeller, or saddle point of the dynamical system described by x’ = Ax. Find the directions of
greatest attraction and/or repulsion. When the origin is a saddle point, sketch typical trajectories.

i

2 -5
Sqution.A:{ ) ],det(A—AI):)\2—2)\—3:()\+1)()\—3):O.

4

Eigenvalues: —1 and 3.

For A =3: l_5 -0 O] ~ {1 ! 0} soT1 = —x3 with x5 free. Takexo = 1 and v = l_ll

————| 1 1 0 0 0 0| ' 1|

For A= —1: {_1 -0 0} ~ {1 0 0] so x1 = —Hxo with x5 free. Take xo = 1 and V2 = {_51
1 50 0 0 0] 20 2 1|

. —1] 3 =5 4
The general solution of x’ = Ax has the form x(¢t) = ¢; Lle + ¢y e

For the initial condition x(0) = ,find ¢; and ¢ such that c; vy + cave = x(0) :

v v o [1 L0

13 |—1 5(—5
Thus ¢ = 13/4,¢5 = —5/4, and x(t) = Tl 1] et — Zl 1] e’

Since one eigenvalue is positive and the other is negative, the origin is a saddle point of the dynamical system
described by x’ = Ax. The direction of greatest attraction is the line through v and the origin. The direction
of greatest repulsion is the line through v, and the origin.



The following diagram is obtained from the website:https://aeb019.hosted.uark.edu/pplane.html
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Exercise 6. Construct the general solution of X’ = Ax involving complex eigenfunctions and then obtain the
general real solution. Describe the shapes of typical trajectories.

-6 —11 16

A= 2 5 —4

-4 =5 10
Solution. We first find the eigenvalues for A by solving | A — AI| = 0. The eigenvalues are 4, 3 and 2.
7

By solving the equations (A — AI)x = 0, we find the eigenvector associated to \; = 4is V1 = | —2
3

For \y = 3, wehave ve = [ —1

For A3 = 2, we have V3 =

7 3 2
Hence the general solution is x(t) = ¢; | —2 elt + co |—1 e3t + c3 |0 e The origin is a repeller,

3 1 1
because all eigenvalues are positive. All trajectories tend away from the origin.



Exercise 7. Construct the general solution of X’ = Ax involving complex eigenfunctions and then obtain the
general real solution. Describe the shapes of typical trajectories.

93 —-30 -2
A= (90 —-52 -3
20 -—-10 2

Solution. We first find the eigenvalues for A by solving | A — AI| = 0. The eigenvalues are 5 + 27,5 — 2¢ and
1.

[23 — 344 ]
For\{ =5+ 2i,wehavevy = | =9+ 144 |,
| 3
[23 + 34i ]
For \y =5 — 24, we have vy = | —9 — 144 .
| 3
-3
For A3 = 1, we have v3 = 1.
1
23 — 34¢ 23 + 344 -3
Thus the general complex solution is X(t) = ¢y | —9 + 144 et 4y | —9 — 144 [ 6720 g | 1€l
3 3 1
Rewriting the first eigenfunction yields
23 — 34: 23 cos 2t 4 34 sin 2t 23sin 2t — 34 cos 2t
—9 + 144 | e®(cos 2t +isin2t) = | —9cos2t — 14sin2t|e® +i [ —9sin2t + 14 cos 2t | ™
3 3cos 2t 3sin 2t
Hence the general real solution is
23 cos 2t + 34 sin 2t 23 sin 2t — 34 cos 2t -3
x(t) = c; | —9cos2t — 14sin2t|e® +cy | —9sin2t + 14cos2t| e +¢c3 | 1|€,
3cos2t 3sin 2t

where c1, ¢, and c3 are real. The origin is a repeller, because the real parts of all eigenvalues are positive. All
trajectories spiral away from the origin.



