
Practices before the class (March 29)

Let P2 be the vector space of the polynomials of degree at most 2. Consider the linear

transformation T : P2 ! R4 defined by T (p(t)) =

2

664

p(0)
p(1)
p(2)
p0(2)

3

775.

Find a basis for the range of T .
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Practices before the class (March 29)
Answer:

• Any element in P2 can be written as p(t) = at2 + bt + c . Note p0(t) = 2at + b.

• Then T (at2 + bt + c) =

2

664

a · 02 + b · 0 + c
a · 12 + b · 1 + c
a · 22 + b · 2 + c

2a · 2 + b

3

775 =

2

664

c
a+ b + c
4a+ 2b + c

4a+ b

3

775 = a

2

664

0
1
4
4

3

775+ b

2

664

0
1
2
1

3

775+ c

2

664

1
1
1
0

3

775

for any p(t) = at2 + bt + c in P2.

• This means any element in the range of T can be written as a linear combination of2

664

0
1
4
4

3

775 ,

2

664

0
1
2
1

3

775 and

2

664

1
1
1
0

3

775. We can also check that they are linearly independent.

• A basis for the range of T is {

2

664

0
1
4
4

3

775 ,

2

664

0
1
2
1

3

775 ,

2

664

1
1
1
0

3

775}
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5.7 Applications to Differential Equations  

Consider a system of differential equations:

We can write the system as a matrix differential equation

where

A solution of equation (1) is a vector-valued function that satisfies (1) for all  in some interval of real numbers, 
such as .

Remark:

1. Superposition of Solutions. If  and  are solutions of , then  is also a solution.

 

 

 

 

 

2. Fundamental Set of Solutions.  If  is , then there are  linearly independent functions in a 
fundamental set and each solution of (1) is a unique linear combination of these  functions.

 

3. Initial Value Problem. If a vector  is specified, then the initial value problem is to  find the unique 
function  such that

 

We have ñAi ,É since ñ
.
J are solutions to Edt) =Ait )

.

We check cñ -1dB satisfies ¥4s = A Ict ) :

fñ+dÑ )
'

= cñitdv '

= cAñtd AJ = A (cñtdñ )



Example 1.  Consider . Here the matrix  is diagonal, we call the system 

decoupled. Find solutions to this system.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ANS : We have {
✗"t > =3 " 't )

and notice each function
xilt)= -5Xslt )

only depends on itself Cole coupled ) .

✗ i = d+ =3× ,

⇒ d¥ =3dt (multiply 0¥, both sides )
⇒ fd¥

,

= zjdt (take integral both sides) .

⇒ In IX. 1=3+-1 C IRecall 1¥ = In 1×1-1.cfdt=t+)

⇒ eh"" = est -1C ( Take
exp

both sides )
.

⇒ × , = ± e
'
. est
C- again

it is a constant
.

let it to

be C,
⇒ xi-lt-C.ee

"

for any c, is a solution to ✗it )
.

Similarly , x.lt/=cze-
*
is a solution to the second equation .

Thus

[
it' | = c. (f) est + c.(

°

, / e-
*

×,µ,|=[
' e
"

12)
↳ e-

st

for any constant c , and Ca
.

We call Egon the general solution for the given system .



 

Remark: The Eigenvalue Method for Solving  

 

 

 

 

 

 

 

 

 

 

 

 

The example suggests a solution might be in the form
of * It )= Jett

, for some ✗ and a non zero vector J .

- We plug ⇒ it > = Je
"
into ¥1T > = A Ict )

.

* It ) = JX#= A Iit ) = AJe¥
⇒ AT -- XJ

Thus ✗ is an eigenvalue for A and J is the corresponding
eigenvector .

- Therefore , to solve E- AI , we can start from finding

eigenvalues and eigenvectors for A .

We summarize the method in Example 2 & Example 4 as follows :



Example 2.   The circuit in Figure 1 can be described by the differential equation

where  and  are the voltages across the two capacitors at time . Suppose resistor  is 1 ohm,  
is 2 ohms, capacitor  is 1 farad, and  is  farad, and suppose there is an initial charge of 5 volts on 
capacitor  and 4 volts on capacitor . Find formulas for  and  that describe how the voltages 
change over time.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(3)

ANS : 12=1
,

Ri 2 ✗do)=5

C ,
= 1 , Cz= 0.5 ✗slot -_ 4

.

Let A be the 2×2 matrix in (3)

Then
A- = [

( H + %) . I yz

1/2×0.5 -1/2×0 .

#
so we need to solve the initial value problem :

I
'

= [
' 5 "

5) I , Ila =/I -1

From the discussion above
,
we need to find solutions in the

form Jett , where ✗ is an eigenvalue for A and J is the

corresponding eigenvector .

/ A- ✗I / =/
-1<5 -✗ 0.5

, y . , /
= 1×+171×+1.5 ) - 0.5=5+2.5×+1--0

⇒ 1×+0.571×+21=0 ⇒ ✗ 1=-0-5 and Xi -2
.

For i. = -0.5
,
the eigenvector is ñ=µ

For Xi-2
,

the eigenvector is ñ= f-f)
Thus I = Ie

"'t



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

I. = is eat

both satisfy
'

= AI
.

Moreover
, they are linearly independent .

Thus a. general solution is their linear combination
.

☒ It) = c. I, HI + c.Elt )

⇒ * It )= c. (f) e-
""
+ c. [f) é

"

for any
constants c. and a

Note * It ) also needs to satisfy the initial value :

⇒ 101=[5-4]
i. e.

⇒ in -- c.µé
"

+ c. [
'¥ !

⇒ c.Huf :| :L :)
⇒ {

c. =3

Cz = -2
.

So the solution to I "=AE
.
Ico)=(%)

is

⇒Hk 3 (d) e-
""
→ [! /é

't

i.e. (
alt )

✗say , ]
e'
°

2 e-
y

bei
't

-2 e-



Decoupling a Dynamical System

Let  be  and has  linearly independent eigenvectors, i.e.,  is diagonalizable.

We use Example 3 to explain how to decouple the equation . For a general discussion about the 
process, please refer to Page 324-325 in our textbook.

 

Example 3. Let . 

Make a change of variable that decouples the equation . Write the equation  and show 
the calculation that leads to the uncoupled system , specifying  and . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ANS : We can compute the eigenvalues and eigenvectors
for A .

i. = -2 ñ= (3)
- ✗

<
= -1 ñ =L :)

- To decouple .

⇒
'

= AI . set F- [ñ If = (} :|
.

and D= [ do ?,|
.

Then A- = PDP
"

and D= P
- '

AP

- Substitute Ict ) = Pig It ) into I
'

= AI
.

We have

⇒ 'lttfpylt ) )
'

= pig 't )

= A Pig it ) = ppp-fpty.lt ,
⇒ pjiijct , =P "pDigits
⇒ g- it , = Digits



or g-
'
= [

2 O

o
- if I

⇒ fy.lt
)

y.im/=f::/fs
"

g. its}

The next formula is useful if we have complex eigen vales
when solving ⇒ ' = At

Euler's formula for complex numbers :

• Euler's formula : e
"
= cos 0 + i.since

Ima

e.io
:

no ! >

Re

✗tiy
• et = e = E. eat = éliosyxisiny )
where 2- = ✗+iy is any complex number .



Complex Eigenvalues

In Example 4, a real matrix  has a pair of complex eigenvalues  and , with associated complex 
eigenvectors  and . So two solutions of  are

which are functions in terms of complex numbers 

!

.

In practice, we want to find real-valued solutions 

"

.

We use this example to explain how to find real-valued solutions for  in such cases.

 

Example 4. Find the solution to the initial value problem , where  and 

. 

Note: You can use the following online calculator to graph the solution curve:

https://aeb019.hosted.uark.edu/pplane.html

 

 

 

 

 

 

 

 

 

 

 

ANS : IA - XI / = f-
2-✗ - 2.5

10 -2- × / = (7+2)-+25=0
⇒ ✗+2--1=5i ⇒ ✗ = -21=5i

¥rX,= -2 -15in , we solve [A- ✗ I > 5=8 ,
the augmented

matrix is
-2.5

Of10 -si 0

Notice R / ✗ Ii = R2 .
thus R1 and R2 give the same

equation .

lox , -5iXz=0

⇒ 2X ,
= its

⇒ ñ = zxfj.IE/-- (L) is an eigenvector for ii. -2+5i.

By 55.5 . we know I. = I = [If is an eigenvector

for k=Ii= -2 -fi .

Thus ⇒ it )= c. (iz) et
>*i't

-1 ↳ [I / e'
→→i't

is



a complex-valued solution .

However
, we often want to find real - valued

solutions
.

To do this
.
We know

① e'
→ +sit

is a solution
.

Rewrite it as

⇒ It] = (1) eats
-ist

=

(1) e-
*

(cosfttisinst ) (as E- étlcosyttisiryt)
= (ic

-

e-dtsins-tze-dtcoszt-s.ie#sin-s-t)--f--e--tsins-tf+i(e-.tcoss-t
Zédtcosst 2. e-

*
sin#

T A

Relicts) Imixit ))
-

Note Relict ) ) and Im (Iit ) ) are both solutions to I '=AÉ
.

Moreover
, they are linearly independent .

Thus a general
solution ( real-valued ) can

'

be a linear combination



 

 

 

Summary 1: Solving  when  has complex eigenvalues 

We summarize the general method described in Example 4 below:

Assume we have complex eigenvalues .

If  is an eigenvector associated with , then  can be written as .

Then we have the solution

Then we get the real-valued solutions

 

 

of them .

It > = c. é2t f-
sinst

dcosgy / ✗ seYos*2si
<

r The initial condition ⇒ co)=µ
.

gives
r

r µ=a( 1) + "H
⇒ {
a-- is

C2 =3

Thus
.

It > =/ g- é2t f-
sinst

Zcosgy / ✗3.ci#sst2sin5t)Note1imx-h--8t-scs



Summary 2: Gallery of Typical Solution Graphs (Trajectories) for the System 

We summarize the typical trajectories that show up in this section:

1. The origin is an attractor (or sink)

This happens when  has distinct negative real eigenvalues.

The arrows are pointing towards the origin.

Check Example 2 for details.

 

2. The origin is a repeller (or source)

This happens when  has distinct positive real eigenvalues.
The arrows are traversed away from the origin.

     

 

 

 

 

 

 



 

3. The origin is a saddle point.

This happens when  has real eigenvalues of opposite sign.
Check Exercise 5 for details about the eigenvectors, greatest attraction, and greatest repulsion.

      

4. The origin is a spiral point.

This happens when  has complex conjugate eigenvalues with nonzero real parts.

If the eigenvalues have positive real parts, the trajectories spiral outward.

 

If the eigenvalues have negative real parts, the trajectories spiral inward. Check Example 4.

     

 



5. The origin is a center and the trajectories are ellipses about the origin.

This happens when  has purely imaginary eigenvalues.

Your Handwritten Homework 28 is an example of this case.

  

 

Exercise 5. (The case when the origin is a saddle point) 

Solve the initial value problem  for , with . Classify the nature of the origin as 
an attractor, repeller, or saddle point of the dynamical system described by . Find the directions of 
greatest attraction and/or repulsion. When the origin is a saddle point, sketch typical trajectories.

Solution. . 

Eigenvalues:  and 3 .

, so  with  free. Take  and .

, so  with  free. Take  and . 

The general solution of  has the form .

For the initial condition , find  and  such that  : 

. 

Thus , and 

Since one eigenvalue is positive and the other is negative, the origin is a saddle point of the dynamical system 
described by . The direction of greatest attraction is the line through  and the origin. The direction 
of greatest repulsion is the line through  and the origin.



The following diagram is obtained from the website:https://aeb019.hosted.uark.edu/pplane.html

 

 

Exercise 6. Construct the general solution of  involving complex eigenfunctions and then obtain the 
general real solution. Describe the shapes of typical trajectories.

Solution.  We first find the eigenvalues for  by solving . The eigenvalues are  and .

By solving the equations , we find the eigenvector associated to  is .

For , we have 

For , we have .

Hence the general solution is . The origin is a repeller, 

because all eigenvalues are positive. All trajectories tend away from the origin.

 

 

 



Exercise 7. Construct the general solution of  involving complex eigenfunctions and then obtain the 
general real solution. Describe the shapes of typical trajectories.

Solution. We first find the eigenvalues for  by solving . The eigenvalues are  and 
.

For , we have .

For , we have .

For , we have .

Thus the general complex solution is .

Rewriting the first eigenfunction yields

Hence the general real solution is 

where , and  are real. The origin is a repeller, because the real parts of all eigenvalues are positive. All 
trajectories spiral away from the origin.

 


